CRR Solar Physics Simulation

Coherence-Rupture-Regeneration Framework Applied to Stellar Dynamics

Mathematical Framework & Implementation

Coherence Integration in Solar Physics

The CRR framework models stellar evolution through coherence accumulation over time. Nuclear fusion provides the primary coherence density function:

C_nuclear(t) = ∫₀ᵗ L_fusion(τ) dτ = t / T_lifetime

Where L_fusion represents the memory density of nuclear reactions and T_lifetime is the stellar lifetime (10 Gyr for Sun-like stars).

// Nuclear coherence implementation const SOLAR_PHYSICS = { solar_age: 4.6e9, // years solar_lifetime: 10e9, // years }; this.crr.nuclear_C = SOLAR_PHYSICS.solar_age / SOLAR_PHYSICS.solar_lifetime; // Result: 0.46 (46% through stellar lifecycle)

Magnetic Coherence Oscillation

The solar magnetic dynamo operates on an 11-year cycle, creating an oscillatory coherence signature distinct from the monotonic nuclear accumulation:

C_magnetic(t) = A·sin(2πt/T_cycle) + φ₀

This represents a resilient signature where coherence builds and ruptures rhythmically, preventing catastrophic accumulation.

// Magnetic cycle coherence (oscillatory signature) const cycleProgress = (this.time * this.crr.time_speed / 200) % 1; this.crr.magnetic_C = cycleProgress; // Modulates chromosphere shader: chromosphereMaterial.uniforms.u_magnetic.value = this.crr.magnetic_C;

Rupture Detection and Implementation

Ruptures are discrete events that reset or reorganize the coherence field. The Dirac delta function captures instantaneous state changes:

δ(t - t₀) · ρ(x) = Impulse_amplitude × Dirac_delta(t - rupture_time)

Three primary rupture mechanisms are implemented:

  • Solar Flares: Magnetic reconnection events with characteristic timescale τ = 5 seconds (simulation time)
  • Coronal Mass Ejections: Large-scale plasma expulsion with τ = 8 seconds expansion time
  • Magnetic Reversals: Complete field polarity inversion, coherence reset to zero
// X-Class Solar Flare (Rupture Event) function triggerXFlare() { engine.crr.active_flare = true; engine.crr.flare_start_time = engine.time; engine.crr.rupture_count++; // Update shader uniforms for visual rupture photosphereMaterial.uniforms.u_flare_intensity.value = 1.0; chromosphereMaterial.uniforms.u_flare_intensity.value = 1.0; } // CME (Major Rupture with Mass Ejection) function triggerCME() { engine.crr.active_cme = true; engine.crr.cme_start_time = engine.time; engine.crr.rupture_count++; // Accelerate particle system (visible mass ejection) const cmeBoost = 3.0; // 3x velocity increase } // Magnetic Field Reversal (Complete Coherence Reset) function magneticReversal() { engine.crr.magnetic_C = 0.0; // δ-function reset engine.crr.rupture_count++; }

Regeneration Operator with Memory Kernel

After rupture, the system regenerates using an exponentially-weighted memory integral that preserves historical coherence structure:

R[χ](x,t) = ∫₀ᵗ φ(x,τ)·exp(C(x)/Ω)·Θ(t-τ) dτ

Where φ(x,τ) is the historical field signal, C(x)/Ω is the normalized coherence, and Θ ensures causality (only past influences present).

// Rupture decay with exponential memory weighting if (this.crr.active_flare) { const elapsed = this.time - this.crr.flare_start_time; const tau = 5.0; // regeneration timescale // Exponential decay: e^(-t/τ) const intensity = Math.exp(-elapsed / tau); if (elapsed > tau) { this.crr.active_flare = false; // Regeneration complete } } // CME regeneration with linear decay (different kernel) if (this.crr.active_cme) { const elapsed = this.time - this.crr.cme_start_time; const intensity = Math.max(0, 1.0 - elapsed / 8.0); extendedCoronaMaterial.uniforms.u_cme_intensity.value = intensity; }

Memory Signatures in Solar Dynamics

The simulation exhibits a hybrid CRR signature combining two distinct temporal regimes:

  • Oscillatory Component (Magnetic): 11-year cycle with regular rupture-regeneration maintains resilient signature
  • Fragile Component (Nuclear): Monotonic accumulation over 10 Gyr with no intermediate ruptures, leading to eventual catastrophic collapse (red giant phase)

This demonstrates how resilient subsystems (magnetic cycles) can be nested within fragile supersystems (stellar evolution), creating multi-scale temporal structure.

Shader Implementation of Coherence Fields

Coherence is visualized through procedural shaders that respond to CRR parameters in real-time:

// Fragment shader for chromosphere (coherence-dependent) uniform float u_magnetic; // Magnetic coherence [0,1] uniform float u_flare_intensity; // Rupture amplitude void main() { // Coherence modulates noise-based structure vec3 coord = vPosition * 5.0 + vec3(u_time * 0.15); float n = noise(coord) * u_magnetic; // Rupture enhances opacity and color temperature float alpha = n * 0.3 + u_flare_intensity * 0.4; vec3 color = mix( vec3(1.0, 0.3, 0.1), // Base chromosphere vec3(1.0, 0.9, 0.7), // Flare brightening u_flare_intensity ); }

Variational Structure and Punctuated Dynamics

The CRR framework extends the Euler-Lagrange variational principle to handle discontinuous evolution:

d/dt(∂L/∂ẋ) - ∂L/∂x = ∫₀ᵗ K(t-τ)φ(x,τ)e^(C(x)/Ω) dτ + Σᵢ ρᵢ(x)δ(t-tᵢ)

Between ruptures, evolution follows smooth variational paths. At rupture times tᵢ, the system undergoes instantaneous boundary condition resets, creating a concatenation of variational arcs stitched by impulses.

This captures the fundamental insight that complex systems maintain identity-through-change by metabolizing rupture rather than eliminating it.

Process Indicators: Observable CRR Operators

The right-hand panel displays six active processes, making the abstract mathematical operators tangible:

  • Nuclear Fusion: Continuous coherence accumulation (always active)
  • Magnetic Dynamo: Oscillatory coherence generation (active when magnetic activity > 0.5)
  • Solar Flare: Rupture event visualization (δ-function pulse)
  • CME: Major rupture with mass transport
  • Magnetic Reversal: Complete field reorganization
  • Field Regeneration: Active memory integral reconstruction

Each indicator lights up when its corresponding operator is actively transforming the system state, providing real-time feedback on the CRR mathematical engine.

CRR PARAMETERS
Nuclear Coherence: 0.460
Magnetic Cycle: 0.46
Stellar Age: 4.6 Gyr
Rupture State: Stable
10x
C6.6
1.0
TOTAL RUPTURE EVENTS
0
R[χ](x,t) = ∫ φ(x,τ)·e^(C(x)/Ω)·Θ(t-τ) dτ
ACTIVE PROCESSES
Nuclear Fusion (Coherence Build)
Magnetic Dynamo Cycle
Solar Flare (Rupture Event)
Coronal Mass Ejection
Magnetic Field Reversal
Field Regeneration
δ(t-t₀) = Dirac rupture
C(x) = ∫ L(x,τ) dτ