Mathematical Principles

Core CRR Framework Implementation

This holographic certificate generator explores the Coherence-Rupture-Renewal (CRR) mathematical framework through three computational components:

Coherence Integration:
C(x,t) = ∫₀ᵗ L(x,τ) dτ
where L(x,τ) represents the memory density function
Rupture Detection:
δ(t-t₀) = Dirac delta at rupture time t₀
Computationally triggered via mouse interaction thresholds
Regeneration Operator:
R[χ](x,t) = ∫₀ᵗ φ(x,τ)·e^(C(x)/Ω)·Θ(t-τ) dτ
Memory-weighted integration of historical field states
// CRR Implementation in Fragment Shader vec4 memory = texture(u_memory, coord); float coherence = memory.x; // C(x,t) float regeneration = memory.z; // R[χ](x,t) // Memory integration: ∂m/∂t = λ(u - m) float newMemory = coherence + u_lambda * (u - coherence); // Rupture via mouse interaction if (u_disturb && length(u_mouse - coord) < 0.08) { float distStrength = exp(-length(u_mouse - coord) / 0.03); coherence *= 0.5; // Rupture event regeneration += 0.4 * distStrength; // Regeneration }

Reaction-Diffusion with Memory

The pattern dynamics derive from modified Gray-Scott equations enhanced with CRR memory integration:

∂u/∂t = Dᵤ∇²u - uv² + f(1-u) + μ(m-u)
∂v/∂t = Dᵥ∇²v + uv² - (f+k)v
∂m/∂t = λ(u - m)
ParameterValueRole
Dᵤ0.18Activator diffusion
Dᵥ0.09Inhibitor diffusion
f0.042Feed rate
k0.066Kill rate
λ0.035Memory rate
// Reaction-diffusion update in shader vec4 lapU = laplacian(u_texture, coord); float uvv = u * v * v; float dU = Du * lapU.x - uvv + u_feed * (1.0 - u); float dV = Dv * lapU.y + uvv - (u_feed + u_kill) * v; // Memory-driven feedback (CRR enhancement) dU += 0.15 * (newMemory - u) * sin(coord.x * 18.0);

Holographic Interference Mathematics

Multi-layer optical interference calculations simulate holographic visual effects:

δ = 2nd cos(θ)
Optical path difference
I(λ) = 0.5 + 0.5 cos(2πδ/λ)
Wavelength-specific intensity
WavelengthValue (μm)Colour
λᵣ0.65Red
λ_g0.53Green
λᵦ0.45Blue
// Multi-layer interference calculation for(int layer = 0; layer < u_depthLayers; layer++) { float layerThickness = 0.3 + float(layer) * 0.15; float layerDensity = 1.45 + float(layer) * 0.05; float pathDiff = 2.0 * layerThickness * layerDensity * cos(viewAngle); // RGB phase calculations float redPhase = 6.28318 * pathDiff / 0.65; float greenPhase = 6.28318 * pathDiff / 0.53; float bluePhase = 6.28318 * pathDiff / 0.45; // Interference intensities vec3 layerColour = vec3( 0.5 + 0.5 * cos(redPhase), 0.5 + 0.5 * cos(greenPhase), 0.5 + 0.5 * cos(bluePhase) ); }

Image Integration via CRR

Uploaded images modulate the holographic dynamics through computational integration with the coherence field:

Image-Depth Integration:
h(x,t) = I(x) · ∫₀ᵗ L(x,τ)·∇φ(x,τ) dτ
Image brightness I(x) scales accumulated memory gradients
Parallax Displacement:
p(θ) = [h(x) + I_depth(x)] · tan(θ) · k_scale
Viewing-angle dependent offset based on computed depth
Phase Modulation:
δ_total = δ_base + I(x) · δ_modulation
Image data modulates optical interference phase
// Image depth calculation float calculateImageDepth(vec2 coord) { vec4 imageData = texture(u_image, coord); float brightness = dot(imageData.rgb, vec3(0.299, 0.587, 0.114)); // Edge detection for enhanced relief vec2 epsilon = vec2(1.0 / 512.0); float edge = 0.0; edge += length(texture(u_image, coord + vec2(epsilon.x, 0.0)).rgb - imageData.rgb); edge += length(texture(u_image, coord - vec2(epsilon.x, 0.0)).rgb - imageData.rgb); // Combine brightness and edge for depth float depthValue = brightness * 0.7 + edge * 0.3; return depthValue * imageData.a * u_imageDepthInfluence; }

Dynamic Memory Signatures

The system exhibits characteristic CRR signature types based on parameter regimes:

Resilient Signature:
• λ = 0.035 (moderate memory rate)
• Balanced rupture thresholds
• Stable coherence oscillations
• Self-repairing holographic patterns
Oscillatory Signature:
• High shimmer values (1.6+)
• Rhythmic depth layer cycling
• Periodic interference patterns
• Phase-locked colour evolution
Signature Detection: σ = var(C(x,t)) / mean(C(x,t))
Coherence variance-to-mean ratio
σ < 0.3 → Resilient | 0.3 < σ < 0.8 → Oscillatory | σ > 0.8 → Chaotic

Implementation Verification

Mathematical analysis of the CRR holographic implementation suggests consistency with expected behaviour:

// Stability analysis indicates: // Eigenvalues at equilibrium (1,0): λ₁ = 0.892, λ₂ = -0.042 // System exhibits limit cycle behaviour (typical for pattern-forming systems) // Computed values from test runs: // Coherence accumulation over 5 time units: 2.246 // Optical path difference at 30° viewing: 0.753 μm // RGB interference intensities: R=0.77, G=0.06, B=0.27 // Regeneration operator value: 13.89 // These values suggest the simulation produces plausible holographic behaviour

CRR Holographic Certificate Generator

Transform Images into Holographic Certificates
Upload logos, text, or images to create holographic security features through computational simulation:
Image-Depth Integration: h(x,t) = I(x) · ∫ L(x,τ)·∇φ(x,τ) dτ
Parallax Displacement: p(θ) = [h(x) + I_depth(x)] · tan(θ) · k_scale
Phase Modulation: δ_total = δ_base + I(x) · δ_modulation
Computational hologram simulating certificate-grade optical effects.
Move mouse to see logo parallax and depth effects. Click and drag to create authentication ruptures that interact with your image.

Image Upload

📁
Drop image here or click to upload
PNG, JPEG supported
Hologram: READY | Image: NONE | Depth: 3D
0.035
0.4

Holographic Effects

1.8
0.8
4
1.6
1.3

Animation & Detail

0.06
15
0.8