Core CRR Framework Implementation
This holographic certificate generator explores the Coherence-Rupture-Renewal (CRR) mathematical framework through three computational components:
Coherence Integration:
C(x,t) = ∫₀ᵗ L(x,τ) dτ
where L(x,τ) represents the memory density function
Rupture Detection:
δ(t-t₀) = Dirac delta at rupture time t₀
Computationally triggered via mouse interaction thresholds
Regeneration Operator:
R[χ](x,t) = ∫₀ᵗ φ(x,τ)·e^(C(x)/Ω)·Θ(t-τ) dτ
Memory-weighted integration of historical field states
vec4 memory = texture(u_memory, coord);
float coherence = memory.x;
float regeneration = memory.z;
float newMemory = coherence + u_lambda * (u - coherence);
if (u_disturb && length(u_mouse - coord) < 0.08) {
float distStrength = exp(-length(u_mouse - coord) / 0.03);
coherence *= 0.5;
regeneration += 0.4 * distStrength;
}
Reaction-Diffusion with Memory
The pattern dynamics derive from modified Gray-Scott equations enhanced with CRR memory integration:
∂u/∂t = Dᵤ∇²u - uv² + f(1-u) + μ(m-u)
∂v/∂t = Dᵥ∇²v + uv² - (f+k)v
∂m/∂t = λ(u - m)
| Parameter | Value | Role |
| Dᵤ | 0.18 | Activator diffusion |
| Dᵥ | 0.09 | Inhibitor diffusion |
| f | 0.042 | Feed rate |
| k | 0.066 | Kill rate |
| λ | 0.035 | Memory rate |
vec4 lapU = laplacian(u_texture, coord);
float uvv = u * v * v;
float dU = Du * lapU.x - uvv + u_feed * (1.0 - u);
float dV = Dv * lapU.y + uvv - (u_feed + u_kill) * v;
dU += 0.15 * (newMemory - u) * sin(coord.x * 18.0);
Holographic Interference Mathematics
Multi-layer optical interference calculations simulate holographic visual effects:
δ = 2nd cos(θ)
Optical path difference
I(λ) = 0.5 + 0.5 cos(2πδ/λ)
Wavelength-specific intensity
| Wavelength | Value (μm) | Colour |
| λᵣ | 0.65 | Red |
| λ_g | 0.53 | Green |
| λᵦ | 0.45 | Blue |
for(int layer = 0; layer < u_depthLayers; layer++) {
float layerThickness = 0.3 + float(layer) * 0.15;
float layerDensity = 1.45 + float(layer) * 0.05;
float pathDiff = 2.0 * layerThickness * layerDensity * cos(viewAngle);
float redPhase = 6.28318 * pathDiff / 0.65;
float greenPhase = 6.28318 * pathDiff / 0.53;
float bluePhase = 6.28318 * pathDiff / 0.45;
vec3 layerColour = vec3(
0.5 + 0.5 * cos(redPhase),
0.5 + 0.5 * cos(greenPhase),
0.5 + 0.5 * cos(bluePhase)
);
}
Image Integration via CRR
Uploaded images modulate the holographic dynamics through computational integration with the coherence field:
Image-Depth Integration:
h(x,t) = I(x) · ∫₀ᵗ L(x,τ)·∇φ(x,τ) dτ
Image brightness I(x) scales accumulated memory gradients
Parallax Displacement:
p(θ) = [h(x) + I_depth(x)] · tan(θ) · k_scale
Viewing-angle dependent offset based on computed depth
Phase Modulation:
δ_total = δ_base + I(x) · δ_modulation
Image data modulates optical interference phase
float calculateImageDepth(vec2 coord) {
vec4 imageData = texture(u_image, coord);
float brightness = dot(imageData.rgb, vec3(0.299, 0.587, 0.114));
vec2 epsilon = vec2(1.0 / 512.0);
float edge = 0.0;
edge += length(texture(u_image, coord + vec2(epsilon.x, 0.0)).rgb - imageData.rgb);
edge += length(texture(u_image, coord - vec2(epsilon.x, 0.0)).rgb - imageData.rgb);
float depthValue = brightness * 0.7 + edge * 0.3;
return depthValue * imageData.a * u_imageDepthInfluence;
}
Dynamic Memory Signatures
The system exhibits characteristic CRR signature types based on parameter regimes:
Resilient Signature:
• λ = 0.035 (moderate memory rate)
• Balanced rupture thresholds
• Stable coherence oscillations
• Self-repairing holographic patterns
Oscillatory Signature:
• High shimmer values (1.6+)
• Rhythmic depth layer cycling
• Periodic interference patterns
• Phase-locked colour evolution
Signature Detection: σ = var(C(x,t)) / mean(C(x,t))
Coherence variance-to-mean ratio
σ < 0.3 → Resilient | 0.3 < σ < 0.8 → Oscillatory | σ > 0.8 → Chaotic
Implementation Verification
Mathematical analysis of the CRR holographic implementation suggests consistency with expected behaviour: